Haberland’s formula and numerical computation of Petersson scalar products

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Haberland’s Formula and Numerical Computation of Petersson Scalar Products

We study several methods for the numerical computation of Petersson scalar products, and in particular we prove a generalization of Haberland’s formula to any subgroup of finite index G of Γ = PSL2(Z), which gives a fast method to compute these scalar products when a Hecke eigenbasis is not necessarily available.

متن کامل

NUMERICAL COMPUTATION OF PETERSSON INNER PRODUCTS AND q-EXPANSIONS

In this paper we discuss the problem of numerically computing Petersson inner products of modular forms, given their q-expansion at∞. A formula of Nelson [Nel15] reduces this to obtaining q-expansions at all cusps, and we describe two algorithms based on linear interpolation for numerically obtaining such expansions. We apply our methods to numerically verify constants arising in an explicit ve...

متن کامل

NUMERICAL COMPUTATION OF PETERSSON INNER PRODUCTS AND q-EXPANSIONS - PRELIMINARY VERSION

In this paper we discuss the problem of numerically computing Petersson inner products of modular forms, given their q-expansion at∞. A formula of Nelson [Nel15] reduces this to obtaining q-expansions at all cusps, and we describe two algorithms based on linear interpolation for numerically obtaining such expansions. We apply our methods to numerically verify constants arising in an explicit ve...

متن کامل

On the transcendence of certain Petersson inner products

‎We show that for all normalized Hecke eigenforms $f$‎ ‎with weight one and of CM type‎, ‎the number $(f,f)$ where $(cdot‎, ‎cdot )$ denotes‎ ‎the Petersson inner product‎, ‎is a linear form in logarithms and‎ ‎hence transcendental‎.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Open Book Series

سال: 2013

ISSN: 2329-907X,2329-9061

DOI: 10.2140/obs.2013.1.249